MATH 245 F20, Exam 2 Solutions

1. Freebie.

2. Prove that $\forall n \in \mathbb{Z}$, we must have $\frac{(n+1)(n-2)}{2} \in \mathbb{Z}$.

There are two cases, by Corollary 1.8 (alternatively, one could cite the Division Algorithm Theorem): n is even or odd.
Case n is even: There is some $k \in \mathbb{Z}$ with $n=2 k$. Now $\frac{(n+1)(n-2)}{2}=\frac{(n+1)(2 k-2)}{2}=$ $(n+1)(k-1) \in \mathbb{Z}$.
Case n is odd: There is some $t \in \mathbb{Z}$ with $n=2 t+1$. Now $\frac{(n+1)(n-2)}{2}=\frac{(2 t+2)(n-2)}{2}=$ $(t+1)(n-2) \in \mathbb{Z}$.
In both cases, $\frac{(n+1)(n-2)}{2} \in \mathbb{Z}$.
3. Let $x \in \mathbb{R}$. Prove that TFAE: (a) x is rational; (b) $7 x$ is rational; (c) $x+1$ is rational.

This problem is all about proof structures and the definition of rational. There must be at least three parts to the solution, although other TFAE proof structures are possible.
Part $a \rightarrow b$: Assume that x is rational. Then $\exists a, b \in \mathbb{Z}$ with $b \neq 0$ and $x=\frac{a}{b}$. Now $7 x=\frac{7 a}{b}$. Since $7 a, b \in \mathbb{Z}$ and $b \neq 0,7 x$ is rational.
Part $b \rightarrow c$: Assume that $7 x$ is rational. Then $\exists a, b \in \mathbb{Z}$ with $b \neq 0$ and $7 x=\frac{a}{b}$. Now $x=\frac{a}{7 b}$ and $x+1=\frac{a}{7 b}+1=\frac{a+7 b}{7 b}$. Since $a+7 b, 7 b \in \mathbb{Z}$ and $7 b \neq 0, x+1$ is rational.

Part $c \rightarrow a$: Assume that $x+1$ is rational. Then $\exists a, b \in \mathbb{Z}$ with $b \neq 0$ and $x+1=\frac{a}{b}$. Now $x=\frac{a}{b}-1=\frac{a-b}{b}$. Since $a-b, b \in \mathbb{Z}$ and $b \neq 0, x$ is rational.
4. Prove or disprove: $\forall x \in \mathbb{R},\lfloor x\rfloor=-\lceil-x\rceil$.

The statement is true. We apply the definition of ceiling to $-x$ to find that $\lceil-x\rceil-$ $1<-x \leq\lceil-x\rceil$. Multiply through by -1 to get $-\lceil-x\rceil \leq x<-\lceil-x\rceil+1$. Hence, both $-\lceil-x\rceil$ and $\lfloor x\rfloor$ are integers which satisfy $m \leq x<m+1$. However, we proved that the floor of x is unique, so $-\lceil-x\rceil=\lfloor x\rfloor$.
5. Prove that $\forall n \in \mathbb{N}, 9^{n}>n^{3}$.

Proof by (vanilla) induction. Base case $n=1: 9^{1}=9,1^{3}=1$, and $9>1$.
Inductive case: Let $n \in \mathbb{N}$ and assume that $9^{n}>n^{3}$. Multiply both sides by 9 to get $9^{n+1}=9 \cdot 9^{n}>9 n^{3}$. Now, since $n \geq 1$, we have each of the following: $n^{3} \geq n^{3}, 3 n^{3} \geq 3 n^{2}, 3 n^{3} \geq 3 n, 2 n^{3} \geq 1$. Adding these, we get $n^{3}+3 n^{3}+3 n^{3}+2 n^{3} \geq$ $n^{3}+3 n^{2}+3 n+1$. This simplifies to $9 n^{3} \geq(n+1)^{3}$. Combining with the earlier $9^{n+1}>9 n^{3}$, we conclude that $9^{n+1}>(n+1)^{3}$.
6. Prove that, for every $n \in \mathbb{N}$, the Fibonacci numbers satisfy $F_{n+3}=2+\sum_{i=2}^{n+1} F_{i}$.

Proof by (vanilla) induction. Base case $n=1: F_{1+3}=F_{4}=3$ and $2+\sum_{i=2}^{2} F_{i}=$ $2+F_{2}=2+1=3$.
Inductive case: Let $n \in \mathbb{N}$ and assume that $F_{n+3}=2+\sum_{i=2}^{n+1} F_{i}$. We add F_{n+2} to both sides, getting $F_{n+2}+F_{n+3}=2+F_{n+2}+\sum_{i=2}^{n+1} F_{i}$. The LHS simplifies to F_{n+4}, by the Fibonacci definition since $n+4 \geq 2$. The RHS simplifies as well, giving us $F_{n+4}=2+\sum_{i=2}^{n+2} F_{i}$.
Pick your favorite, different, real numbers b, c that are not integers, to use in the rest of the exam.

The only correct answer is $b=-\frac{1}{2}$ and $c=\pi$. Anything else is NOT your favorite.
7. Solve the recurrence with initial conditions $a_{0}=b, a_{1}=c$ and relation $a_{n}=2 a_{n-1}-$ a_{n-2} (for $n \geq 2$).

We have characteristic polynomial $r^{2}-2 r+1=(r-1)^{2}$, which has the double root 1. Hence the general solution is $a_{n}=S 1^{n}+T n 1^{n}=S+n T$, for some constants S, T. We now determine these constants using our favorite real numbers $b=-\frac{1}{2}$ and $c=\pi$.

Since $a_{0}=b$, we have $-\frac{1}{2}=a_{0}=S+0 \cdot T$, so $S=-\frac{1}{2}$. Since $a_{1}=c$, we have $\pi=a_{1}=S+1 \cdot T=-\frac{1}{2}+T$, so $T=\pi+\frac{1}{2}$.
Hence the solution we seek is $a_{n}=-\frac{1}{2}+n\left(\pi+\frac{1}{2}\right)$.
8. (i) Prove or disprove that $n^{b}=O\left(n^{c}\right)$; and (ii) Prove or disprove that $n^{c}=O\left(n^{b}\right)$.

For the values of b, c above, it turns out that $-\frac{1}{2}<\pi$. Hence (i) is true and (ii) is false. If you chose b, c with $b>c$, then these need to be reversed.

Proving (i): Let $n_{0}=1$ and $M=1$. Provided $n \geq n_{0}=1$, we also have $n^{\pi+1 / 2} \geq 1$, because $\pi+1 / 2>0$. Multiplying on both sides by the positive number $n^{-1 / 2}$, we get $n^{\pi} \geq n^{-1 / 2}$. Therefore $\left|n^{b}\right|=n^{-1 / 2} \leq n^{\pi}=M\left|n^{c}\right|$.
Disproving (ii): Let n_{0}, M be arbitrary real numbers. Choose $n=1+\max \left(n_{0}, M^{-1 / 2-\pi}\right)$. Note that n is chosen so that $n>n_{0}$ and also $n>M^{-1 / 2-\pi}$. Hence $n^{\pi+1 / 2}>M$, and therefore $n^{\pi}>M n^{-1 / 2}$. So we have $\left|n^{c}\right|=n^{\pi}>M n^{-1 / 2}=M\left|n^{b}\right|$.

Fun facts from the exam:

The most popular choice of favorite real numbers was $b=\frac{1}{2}, c=\frac{1}{4}$, chosen by 17% of students. There was a tie for second most popular choice, between $b=\frac{1}{4}, c=\frac{1}{2}$ (the most popular choice, reversed) and $b=\frac{1}{2}, c=\frac{3}{2}$, each chosen by 11% of students. NOBODY picked $b=\frac{3}{2}, c=\frac{1}{2}$ (the other popular choice, reversed).
Only 4% of students picked at least one irrational number. Only 4% of students picked at least one negative number.

